A New EMVA Standard for an Open Interface between Optical Components and Cameras — EMVA’s new OOCI Standard

Bernd Jähne

Board Member EMVA and Chair EMVA 1288 Standard
Heidelberg Collaboratory for Image Processing (HCI)
Heidelberg University, Germany
jaehne@emva.org

Stemmer Technologieforum Bildverarbeitung
München, 8.–9. Oktober 2019
I Where we are today?
Machine vision lens mounts are dump

(C-mount machine vision cameras; source Basler AG, Ahrensburg)

- Just mechanical connection
- Most commonly used screw mount (C-Mount, 1" × 32 TPI)
 - Flange focal distance 17.526 mm
 - Developed 90(!) years ago for 16 mm cine cameras
Is there something new?

(Sources ArduCam and Edmund Optics)

- S-mount for small imaging systems: M12 × 0.5
- CS-mount with 5 mm shorter flange focal distance than C-mount
- TFL-mount for larger sensors: M35 × 0.75
- System camera mounts (M42, Nikon F, ... used without electric interface)
Lens mounts of commercial system cameras:
Not really useful for machine vision

- Almost each manufacturer has its own bayonet
- Proprietary interfaces for control of focus, lens and communication of lens parameters → Reverse engineering required
- Bayonet mounts have too much play for many machine vision tasks

(Source www.kenrockwell.com)
II Why is an open optics camera interface needed urgently?
Reason 1: Pressure to implement standard features and ease of control of modern consumer system cameras into machine vision systems

- Control of focus (incl. autofocus) and feed back of focal distance
- Control of zooming and feed back of focal length
- Control of aperture and feed back of aperture setting
- Correction of lens shading by feedback of aperture dependent lens shading
- Correction of geometrical distortion and lateral chromatic aberration
- Compensation of camera vibration and motion during exposure
Reason 2: Modern optical components for machine vision require control

- Control of liquid lenses for autofocus
- Control of liquid lenses for depth imaging by focus series
- Control of filter wheel for multispectral camera
- Control of electrically tunable bandpass filter
- Control of angle of polarization filter
- Control of camera motion for structure form motion depth imaging

Modern photonics will bring in much more new elements . . .

Without an open standard only proprietary solutions are possible
Example: tunable and free form tunable microlens array

(from Berto et al., Nature Photonics, September 2019)
Reason 3: Embedded vision systems offer computing power on the edge

AVT Alviun ASIC Intel (Movidus) Myriad Chip Tulipp platform

using ASICs, vision/machine learning processors, heterogenous platforms with FPGA, DSP, GPU, general purpose CPUs transform camera into sensor
Reason 4: Enable new generation of vision systems: *Computational imaging*

Synergistic approach including optics and image processing to overcome limits of traditional image acquisition systems:

- Get *intelligent acquisition systems* using known lens data, illumination, and given requirements to select optimum combination of aperture, exposure time and camera gain (noise level in image)

- *Increase depth of field* without closing aperture and having less light (EDOF systems)

- *Reduce motion blur* without reducing exposure time

- Acquire *superresolution images*

- And much more . . .
III Elements of the EMVA

Open Optics Camera Interface (OOCI)
History Open Optics Camera Interface (OOCI)

- Idea first discussed on 2nd European Machine Vision Forum in Vienna, September 2017
- Spring 2018: EMVA board of directors decided to set up new standardization work group
- May 2018: Introduction of the new standardization initiative at International Vision Standards Meeting in Frankfurt
- Inaugural meeting of working group on July 9, 2018 at Heidelberg University with election of chairs (Marcel Naggatz, Baumer Optronics and Erik Widding, Birger Engineering)
- Since then two more meetings and several telephone conferences
Common communication protocol (first draft to be finished soon)

- Optical features to be included in the *Standard Feature Naming Convention* (SFNC) of the Generic Interface for Cameras to Computers (GenICam)
- OOCl device protocol built on top of GenICam *Generic Control Protocol* (GenCP) including a power negotiation strategy
- Examples for features of optical components
 - Focus
 - FocalLength
 - Aperture
 - Shutter
 - Filter
 - Stabilization
 - Additional axes (such as camera pan and tilt)
- Proprietary features can be added
- Support for multiple optical components, e.g., lens and tunable filter
Electrical interfaces (next task)

Definition of a mechanical and connector interface (next task)

- External device, utilizing external cabling — recommend specific JIIA standardized screw threads, electrical connector, and pinout
- External device without cable — recommend surface contact layout with, and potentially multiple, preferred bolt pattern(s) and contact location(s) for various camera body sizes
- Internal device with flex cable connection — recommend pinout and geometry of flex cable interface
- Open question: Inductive connection without direct electrical contacts?

This proposal covers whole range from miniature, even fully integrated systems (where lens cannot be separated from sensor) up to high-end metrological systems.
Need for novel lens mounts

- All currently used bayonet mounts are not stable enough for tasks that require precise knowledge of intrinsic orientation of camera (e.g., stereo and any multicamera setup).

- Standard threaded mounts are more stable, but not suitable to integrate an electrical interface?

Two big challenges:

- How to make new lens mounts compatible to existing lens mounts, especially most widely used C-mount?

- How to design a cheap lens mount with low play and electrical connections?
Conclusions

- Surprising that such an essential part of a vision system has been overlooked for years (Same happened with standardized interfaces for digital cameras)

- OOCI Standard of EMVA provides new opportunities for research and industry

- Will be essential for next generation of vision systems

Be part of this exiting opportunity and join the OOCI working group by contacting

- OOCI chair Marcel Naggatz (mnaggatz@baumer.com),
- EMVA standards manager Werner Feith (feith@emva.org) or
- speaker (jaehne@emva.org)
Literature

[1] Survey of optical mounts

[2] Lens working group of the Japanese Industrial Imaging Association (JIIA)

[3] Joint publication by the International Machine Vision Associations (AIA, EMVA, JIIA,

[4] Generic Interface for Cameras to Computers (GenICam)
 https://www.emva.org/standards-technology/genicam/.
Literature II

www.standard1288.org
https://zenodo.org/record/235942

[6] EMVA 1288 datasheets and further 1288 documents
According to template datasheets of Release 3.0 and 3.1:
https://zenodo.org/collection/user-emva1288

Tunable and free-form planar optics.
Nature Photonics, 2019, 13, 649–656,
http://dx.doi.org/10.1038/s41566-019-0486-3.
Literature III

On the urgent need of an open camera to lens communication standard for vision systems.
Poster, 2nd European Machine Vision Forum, Vienna, 2017

Digital Image Processing.

Digitale Bildverarbeitung und Bildgewinnung.