OPTICAL 2D MEASUREMENT: CONNECTORS AND PINS

LARS FERMUM, CHIEF INSTRUCTOR, STEMMER IMAGING
CONNECTORS & PINS

- Connectors for electrical power transmission and electronic (and optical) signal transmission

- Typical interconnect solutions:
 - Wire-to-wire-connection (connecting two cable wires)
 - Wire(cable)-to-board (connecting a cable to a PCB)
 - Board-to-board (connecting two pcb boards)
 - Contacting by a rigid (pin) element and a Spring-loaded contact element (spring or female-socket)

- PCBs: solder pins (pin-in-paste technology / THT reflow) or press-in pins
CONNECTORS & PINS

- Trend: Increasing bandwidths for signal transmissions with simultaneous miniaturization

- Correct, permanent connection: A guarantee for function

- Increasing demands on accuracy
 - Housings
 - Pins
 - Holes, springs & female-sockets

- 100% control of pins
 - X- and Y-position (tumbling circle)
 - insertion depth (z) (=> not possible with 2D solution)

 • Required accuracies +/- 1/10 mm, +/- 5/100 mm and better (measuring-capable)

- Problems: Thin pins, pin tip even smaller, glossy, dark housing, different measuring planes, interfering contours
Illumination
THE PERFECT ILLUMINATION

- Measurement of pin tips: only incident light, no transmitted light
- Creating a reflection on the pin that is as even as possible
- But: pin tip often inhomogeneous (stamped) pins, electroplated layers
- Pins: different contour angles
- Rather not: normal ring light, too many direct illumination reflexes
- Rather not: diffuse dome lighting in combination with telecentric lens (difficult due to dome opening)
COAXIAL ILLUMINATION

- Illumination from top side
- Creates diffuse reflection at pin tip
- Can optionally be integrated into telecentric lenses
- Illuminates even surfaces homogeneously
- Stamped pins difficult, not always ideal surface
DIFFUSED LIGHT, FROM THE SIDE

- Lateral illumination at an angle from the side
- Larger illuminated surface depending on pin geometry
- Working distance and angle of illumination must match pin
- Ideal: multidirectional illumination using different angles
DARK FIELD

- Incident light from the side with low angle

- Depending on pin geometry different reflections, illumination of contours, no entire illuminated surface

- Longer exposure times required

- Small working distances: difficult with deeper located pins, possibly no proper illumination of housing
SHAPE FROM SHADING

- Photometric Stereo: Illuminating from four different directions, acquisition and computation of four images
- The use of telecentric optics is important
- Computing a curvature image
- Pros:
 - Independent of brightness and pin and housing materials
- Cons:
 - Four shots: Cycle time
 - Mostly no motion, without vibrations
Optics
ENTOCENTRIC LENSES

- Depending on the working distance, different sizes of optical depiction. Pin tip or upper edge of housing appears larger than features positioned further away.

- Pin measurement with usual entocentric optics not useful.

- Opening angle of lens: Is the pin bent (x/y) or shorter (z)?
TELECENTRIC LENSES

- Objects will have “same size” within the telecentric range, regardless of whether they are closer or further away.

- No change of scale: measuring from pin to connector edge or to board is no problem.

- No perspective effects due to aperture angle of lens 0.0x degrees.
TELECENTRIC BASICS

Camera
For determining the optics, the size of the sensor is important (image size)

Telecentric range
No visible change of reproduction scale

Reproduction scale (magnification):
\[\beta = \frac{\text{image size}}{\text{object size}} \]

Measuring planes
Measuring points in different planes (but should be checked for x/y offsets)

Field of view
Visible detection area of camera system

Also available with built-in coaxial lighting
OBJECT SEARCH ALGORITHMS

- Positioning using gradient based object searches ("contour searches")
- Rotation invariant, brightness independent

- Subpixel-accurate measurements possible
- Not suitable for pin tip detection, especially for small areas too little significant information
MEASUREMENT TOOLS

- Positioning and measurement using Edge tools. Pin tips rather difficult to "measure" because of very small "point".

- Subpixel-accurate measurements: high contrast as possible, but no overexposure!

- Rather for finding longer edges, not small pin tips

- Attention: Sensor blooming on overexposed metal structures leads to falsified results
BLOB TOOLS

- Pin position often done with blob tools (pin tips often too small for measuring tools)
- Problems: Metal pins reflect very differently (due to shape and material) and appear brighter / darker

- Determination of the center of gravity using as many pixels as possible, thus also increased accuracy as with sub-pixeling
- Attention: Incorrect thresholds or pin-brightnesses lead to falsified results
WORKPIECE EFFECTS

Problems with plastic injection moulding

- Housing colours: dark or light in combination with shiny pin tips
 - Single exposure time? Image fusion with 2 images? HDR?

- Fibre glass particles in plastic can cause reflections

![Bright pins](image1)
![Bright background](image2)
![HDR](image3)
![Fusion of 2 images](image4)
WORKPIECE EFFECTS

Problems with plastic injection moulding

- Depth of field
- What are suitable reference edges?
- Material deformation of housing

Distance 1

0.157 mm Offset

Different measuring planes
Focus?
WORKPIECE EFFECTS

Problems with pins

- Stamping strips with different gloss depending on the electroplating process. Raw material for pins meets metric tolerances, but appears brighter or darker depending on the coating.

- Different stamped/shaped pins: tool abrasion, changes in stamping strips...

- Combined lighting setups, multiple software tools for a single pin
ILLUMINATION EFFECTS

Measuring troubles

- Evaluation is not based on the physical center of the pin tip, but on the visible reflection that is illuminated.

- In case of pin bending the reflection is reflected in a different place (rounded pin tip).

- or the reflection does not appear uniformly illuminated (stamped pins).

- Result: falsification of the measuring accuracy.
POSITIONING EFFECTS

Measuring troubles

- Systematic measurement errors may also occur within the telecentric range when using telecentric lenses.
- Tilting or rotating the component leads to changed lengths. Parallax error!
- Accurate positioning / fixing of the component

Example:

- Real length = 50mm
- Part height = 10mm
- Component tilt = 0.25 degrees

Visible length $L_{\text{new}} = L - L*(1-\cos \alpha) + H*\sin \alpha$
THANK YOU FOR YOUR TIME!

QUESTIONS?

Your contact person
Lars Fermum

STEMMER IMAGING AG
+49 89 80902-272
info@stemmer-imaging.de
www.stemmer-imaging.de