Application Note

The FIR Filter Rev 1.0

AT - Automation Technology GmbH

Table of Contents

Table of Contents	2
Introduction	3
How the FIR filter works	4
First Derivative Mode of FIR Filter	6
Smoothing Mode of FIR Filter	7
FIR Filter Coefficients	8
FIR Filter Gain	9
FIR Filter Correction	9
The 3D FIR Peak algorithm	. 10
Description of FIR parameters in the GenICam interface	. 13
The CX-Explorer Wizards for Image and 3D Mode	. 14
Image Wizard	. 14
3D Wizard	. 15
Document Revision	. 16

by: AT

Introduction

The FIR filter is a new implementation for the CX camera series enabling the application of a digital Finite Impulse Response filter (FIR) to the sensor image in order to precisely detect the laser line position.

The FIR can act as a differentiating or smoothing filter.

In 3D mode the FIR filter implementation is available as a stand-alone algorithm called FIR Peak. The FIR Peak algorithm analyses the intensity distribution by a mathematical derivation and by means of a zero-crossing detection (ZCD) precisely determines the position of laser line in the sensor image.

The FIR filter can be also used in combination with the other algorithms (TRSH, MAX, COG) as a pre-processor for smoothing the sensor image.

The following sections of this application note describe the implementation and configuration of the FIR filter over the GenICam interface of the camera as well as the Wizards of CX-Explorer.

02.04.2014

by: AT

How the FIR filter works

The FIR is a digital filter with up to nine coefficients (taps). These coefficients are selectable via a GenlCam enumeration node, which provides pre-defined filter designs (templates). Each filter design differs from each other with respect to the number of coefficients and the value for each coefficient. For instance the template AV5 is an average filter with 5 coefficients, whereas the AV9 is an average filter using 9 coefficients.

Figure 1: FIR filter with N+1 taps

Depending on the taps value, the filter operates in two different modes. For the FIR Peak algorithm the filter design is a derivative filter. For the COG, TRSH and MAX algorithm the FIR acts as a smoothing filter.

Following FIR templates are pre-defined for these two modes:

FIR Coefficients	FIR Mode	Availability
SG5	Derivative	FIR Peak, Image Mode
SG7	Derivative	FIR Peak, Image Mode
SG9	Derivative	FIR Peak, Image Mode
AV5	Derivative	not available
AV7	Derivative	not available
AV9	Derivative	not available
SG5	Smoothing	COG, TRSH, MAX, Image Mode
SG7	Smoothing	COG, TRSH, MAX, Image Mode
SG9	Smoothing	COG, TRSH, MAX, Image Mode
AV5	Smoothing	COG, TRSH, MAX, Image Mode
AV7	Smoothing	COG, TRSH, MAX, Image Mode
AV9	Smoothing	COG, TRSH, MAX, Image Mode

Table 1: Available FIR Coefficients

Automation Technology	Application Note	Issued date:	Page 5 of 16
Vision Sensors and Systems	The FIR Filter	by: AT	Rev. 1.0

The following picture shows a typical laser line image and a line plot with the intensity distribution along an image column.

Figure 2: Laser line intensity distribution along a column with FIR= Off

The peak position of the laser line can be detected by different algorithms, like MAX, TRSH, COG and FIR Peak.

Automation Technology	Application Note	Issued date:	Page 6 of 16
Vision Sensors and Systems	The FIR Filter	by: AT	Rev. 1.0

First Derivative Mode of FIR Filter

The FIR filter can be activated by following GenlCam nodes.

Property	Value
Root Device Control Image Format Controls Acquisition Control Camera Control AOIs FIR Control	
FIR Off/On FIR Mode FIR Coefficients	true Derivative SG9 3
FIR Correction ⊕Mode and Algorithm Control	false

Figure 3: XML view with enabled FIR and FIR Mode=Derivative

When the camera is configured to Image Mode, setting the FIR Mode to *Derivative*, enables the camera to output the first derivative of the image intensity. This mode can be used to validate the quality of the laser line.

Figure 4: Distribution of first derivative of intensity with FIR=ON, FIR Mode=Derivative, FIR Coefficients=SG9, FIR Gain=3

Automation Technology	Application Note	Issued date:	Page 7 of 16
Vision Sensors and Systems	The FIR Filter	by: AT	Rev. 1.0

Smoothing Mode of FIR Filter

The FIR can be also used as a smoothing filter, by setting the FIR mode to "Smoothing".

Property	Value
 Root Device Control Image Format Controls Acquisition Control Camera Control AOIs FIR Control 	
FIR Off/On FIR Mode FIR Coefficients FIR Gain	true Smoothing AV5 2
 FIR Correction Mode and Algorithm Control	false

Figure 5: XML view with enabled FIR and FIR Mode=Derivative

The following figure shows the intensity distribution for one column with activated Smoothing filter.

Figure 6: Smoothed intensity distribution with FIR=On, FIR Mode=Smoothing, FIR Coefficients=AV5, FIR Gain=2

This mode is useful in cases in which the normal intensity distribution is noisy and it is recommended to be used in combination with 3D algorithms MAX, TRSH and COG. The latter delivers the highest accuracy, when it is applied to a smoothed Gaussian distribution.

Automation Technology	Application Note	Issued date:	Page 8 of 16
Vision Sensors and Systems	The FIR Filter	02.04.2014 bv: AT	Rev. 1.0

In this case the FIR mode is locked to *Smoothing*, due to the fact that these algorithms are applied to the intensity of the laser line (no differentiation is required).

🖨 Camera Control	
🚍 AOIs	
Maximum Number AOIs	8
Number of AOIs	1
Image Mode AOI Selector	1
AOI Selector	1
AOI Height	363
AOI Offset Y	435
AOI Threshold	115
🕀 FIR Control	
FIR Off/On	true
FIR Mode	Smoothing
FIR Coefficients	AV5
FIR Gain	2
^L FIR Correction	false
Mode and Algorithm Control	
Camera Mode	3D Center of Gravity (COG)
Profiles per Frame	100
Absolute Position	false
First Falling Edge	false
Subpixel Bits	6

Figure7: XML view for the COG mode with Smoothing

Furthermore, the AOI Threshold is applied to the *smoothed* intensity distribution. The valid range is from 0 to 1023 (Pixel Format = Mono16).

FIR Filter Coefficients

The most important part for designing a digital filter is the parameterization of the taps. Depending on the values for each coefficient the behavior may completely change. For this sensitive part the FIR implementation includes pre-defined templates for the smoothing and derivation tasks. The figure below shows three different filter designs. All supported filter coefficients are explicitly listed in *Table 1* and section *Desciption of FIR parameters in the GenlCam interface*.

02.04.2014

by: AT

FIR Filter Gain

The FIR Gain is a digital amplifier to increase the amplitude of the filtered output image. The valid range is from min=1 to max=10. This range is the same for all FIR modes and coefficients. Depending on the filter mode and filter coefficients, a gain greater than 5 may lead to a filter overflow and thus the output becomes zero. In this case the gain must be reduced to get good output values.

FIR Filter Correction

FIR filter of order N consists of N+1 taps and N delays (see Figure 1). The group delay for the FIR filter implementation with a maximum of 9 taps is a constant shift of 4 pixels in the position value. The FIR Filter correction compensates the shift of the position value. With enabled correction the position values for the FIR Peak are the same as without using the FIR and by choosing one of the traditional algorithms, such as COG, TRSH, MAX. This has the advantage to compare the results and accuracy between these algorithms.

02.04.2014

by: AT

The 3D FIR Peak algorithm

The 3D FIR Peak algorithm can be activated over the GenICam node *CameraMode*. The following GenICam nodes have been modified to support the FIR Peak mode.

Name	Туре	Visibility	Description	
CameraMode	IEnumeration	Beginner	Selects the camera mode and/or the	
			algorithm	
			Symbolic	Value
			Image	0
			Threshold	1
			MaximumIntensity	2
			CenterOfGravity	3
			FIRPeak	4
NumSubPixel	IInteger	Beginner	Number of subpixe	l bits of COG
			and FIR-Peak output	
			Minimum	0
			Maximum	6
			Increment	1

When the 3D FIR Peak Mode is selected the camera detects and outputs the "zerocrossing" (ZCD) of the first derivative of intensity with subpixel accuracy.

Figure 8: Zero-Crossing Detection (ZCD) of the first derivative of Gaussian intensity distribution

The AOI Threshold refers to derivative values, ranging from 513 to 1023 (Pixel Format = Mono16).

The AOI Threshold is used in the FIR Peak mode to detect the first rising edge of the first derivative of the Gaussian intensity distribution. It acts the same way as with the other algorithms, where the threshold value is used to detect the *Left Edge* (P_L) of the Gaussian distribution (for more details see camera manual section "Camera Algorithms").

Figure 10: XML view of the GenlCam AOIs and FIR categories

The figure below shows a typical configuration in the XML view for the FIR Peak mode.

Camera Control	
Maximum Number AOIs	8
Number of AOIs	1
Image Mode AOI Selector	1
AOI Selector	1
AOI Height	363
AOI Offset Y	435
AOI Threshold	520
FIR Control	
FIR Off/On	true
FIR Mode	Derivative
FIR Coefficients	SG9
FIR Gain	3
FIR Correction	false
Mode and Algorithm Control	
Camera Mode	3D FIR Peak (PEAK)
Profiles per Frame	100
Absolute Position	false
First Falling Edge	false
Subpixel Bits	6

Figure 5: XML view for the FIR Peak mode

As shown above, the FIR Peak mode uses the FIR filter exclusively in *Derivative* mode, This is necessary because the first derivative image is mandatory for the zero-crossing detection (ZCD). The detected zero-crossing is then output over the data channel DC2.

Figure 6: Image View of a 3D range map with additional single profile plot

Description of FIR parameters in the GenICam interface

Name	Туре	Visibility	Description	
FIRControl	lCategory	Beginner	Features relating to FIR	
FIR	IBoolean	Beginner	Enables the FIR when set to TRUE.	
			FIR is disabled whe	en set to FALSE
FIRMode	IEnumeration	Beginner	Selection of the FI	R Mode
			Symbolic	Value
			Smoothing	0
			Derivative	1
-			-	
FIRCoef	IEnumeration	Beginner	Selection of the FI	R Coefficients
			Symbolic	Value
			SG5	0
			SG7	
			SG9	2
			AV5	3
			AV/	4
			AV9	5
			AV/5 Smoothing	mada anlu
			AV7 Smoothing mode only	
			AV7 - Smoothing mode only	
			Sincoming i	
FIRGain	IInteger	Beginner	FIR Gain	
	Ũ	U		
			Minimum	1
			Maximum	10
			Increment	1
FIRCorrection	IBoolean	Expert	If TRUE it cancels	the effect of filter
			index mismatch in	3D mode

The CX-Explorer Wizards for Image and 3D Mode

The Wizards of CX-Explorer for Image and 3D Mode have been extended in order to help configuring easily the FIR parameters.

The FIR functionality is supported by the CX-Explorer version 2.5.0 and higher

Image Wizard

🖞 Image Wizard		? 🗙
Image Configuration Image Parameters	1	
Imageformat:	Grey 8 Bit	v
Integration time in µs:	5853	
FIR Off/On:		
FIR Mode:		~
FIR Coefficients:		~
FIR Gain:		
	< Back Next > Ca	incel

Figure 13 Image Wizard <u>without</u> use of FIR filter

🐐 Image Wizard		? 🗙
Image Configuration Image Parameters	1	
Imageformat:	Grey 16 Bit	~
Integration time in μs :	1000	
FIR Off/On:		
FIR Mode:	Derivative	~
FIR Coefficients:	569	~
FIR Gain (1-10) :	3	
	< <u>B</u> ack Next > Ca	ncel

Figure 74: Image Wizard with use of FIR filter

02.04.2014

by: AT

3D Wizard

🐐 3D Wizard	2 😒
3D Mode Algorithm	
Profiles per Frame:	1000
3D Algorithm:	FIR-Peak Detection Algorithm (PEAK)
Sensor integration time in µs:	100
SubPixel for 3D Algorithm:	6
	< <u>Back</u> Next > Cancel

Figure 15: 3D Wizard with selected FIR Peak algorithm

🖞 3D Wizard	? 🗙
3D Mode Output Channels	
Data Channel 0:	
Data Channel 1:	
DC1 outputs the left edge position	
O DC1 outputs the laser line width	
Data Channel 2: Line position with 1/64 pixel resolution	
DC2 outputs the right edge position	
DC2 outputs the line position value with one subpixel	
< <u>B</u> ack <u>N</u> ext > Ca	incel

Figure 16: 3D Wizard for output channels in <u>FIR Peak</u> mode

Application Note	Issued date:	Page 16 of 16
The FIR Filter	by: AT	Rev. 1.0

Document Revision

Rev. Nr.	Date	Modification
1.0	02.04.2014	First draft